Thuật toán Dijkstra

Thuật toán Dijkstra cho phép chúng ta tìm đường đi ngắn nhất giữa hai đỉnh bất kỳ của đồ thị.

Nó khác với cây khung tối thiểu vì khoảng cách ngắn nhất giữa hai đỉnh có thể không bao gồm tất cả các đỉnh của đồ thị.

Cách hoạt động của Thuật toán Dijkstra

Thuật toán Dijkstra hoạt động dựa trên cơ sở rằng bất kỳ B -> Dđường con nào của đường đi ngắn nhất A -> Dgiữa các đỉnh A và D cũng là đường đi ngắn nhất giữa các đỉnh B và D.

Mỗi đường dẫn con là đường đi ngắn nhất

Djikstra đã sử dụng tính chất này theo hướng ngược lại, tức là chúng ta ước tính quá cao khoảng cách của mỗi đỉnh từ đỉnh xuất phát. Sau đó, chúng tôi truy cập từng nút và các nút lân cận của nó để tìm đường dẫn con ngắn nhất đến các nút lân cận đó.

Thuật toán sử dụng cách tiếp cận tham lam với nghĩa là chúng ta tìm ra giải pháp tốt nhất tiếp theo với hy vọng rằng kết quả cuối cùng là giải pháp tốt nhất cho toàn bộ vấn đề.

Ví dụ về thuật toán Dijkstra

Sẽ dễ dàng hơn khi bắt đầu với một ví dụ và sau đó nghĩ về thuật toán.

Bắt đầu với đồ thị có trọng số Chọn một đỉnh bắt đầu và gán giá trị đường dẫn vô cực cho tất cả các thiết bị khác Đi đến mỗi đỉnh và cập nhật độ dài đường dẫn của nó Nếu độ dài đường dẫn của đỉnh liền kề nhỏ hơn độ dài đường dẫn mới, đừng cập nhật nó Tránh cập nhật đường dẫn độ dài của các đỉnh đã được thăm Sau mỗi lần lặp, chúng ta chọn đỉnh chưa thăm có độ dài đường đi nhỏ nhất. Vì vậy, chúng tôi chọn 5 trước 7 Chú ý rằng đỉnh ngoài cùng bên phải có độ dài đường đi của nó được cập nhật hai lần Lặp lại cho đến khi tất cả các đỉnh đã được thăm

Mã giả thuật toán Djikstra

Chúng ta cần duy trì khoảng cách đường đi của mọi đỉnh. Chúng ta có thể lưu trữ nó trong một mảng có kích thước v, trong đó v là số đỉnh.

Chúng ta cũng muốn có thể đi được con đường ngắn nhất, không chỉ biết độ dài của con đường ngắn nhất. Đối với điều này, chúng tôi ánh xạ mỗi đỉnh đến đỉnh được cập nhật lần cuối cùng độ dài đường dẫn của nó.

Khi thuật toán kết thúc, chúng ta có thể quay ngược lại từ đỉnh đích đến đỉnh nguồn để tìm đường dẫn.

Một hàng đợi ưu tiên tối thiểu có thể được sử dụng để nhận đỉnh có khoảng cách đường đi nhỏ nhất.

 function dijkstra(G, S) for each vertex V in G distance(V) <- infinite previous(V) <- NULL If V != S, add V to Priority Queue Q distance(S) <- 0 while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance(U) + edge_weight(U, V) if tempDistance < distance(V) distance(V) <- tempDistance previous(V) <- U return distance(), previous()

Mã cho thuật toán Dijkstra

Việc triển khai Thuật toán Dijkstra trong C ++ được đưa ra dưới đây. Độ phức tạp của mã có thể được cải thiện, nhưng các yếu tố trừu tượng sẽ thuận tiện để liên hệ mã với thuật toán.

Python Java C C ++
 # Dijkstra's Algorithm in Python import sys # Providing the graph vertices = ((0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0)) edges = ((0, 0, 1, 2, 0, 0, 0), (0, 0, 2, 0, 0, 3, 0), (1, 2, 0, 1, 3, 0, 0), (2, 0, 1, 0, 0, 0, 1), (0, 0, 3, 0, 0, 2, 0), (0, 3, 0, 0, 2, 0, 1), (0, 0, 0, 1, 0, 1, 0)) # Find which vertex is to be visited next def to_be_visited(): global visited_and_distance v = -10 for index in range(num_of_vertices): if visited_and_distance(index)(0) == 0 and (v < 0 or visited_and_distance(index)(1) <= visited_and_distance(v)(1)): v = index return v num_of_vertices = len(vertices(0)) visited_and_distance = ((0, 0)) for i in range(num_of_vertices-1): visited_and_distance.append((0, sys.maxsize)) for vertex in range(num_of_vertices): # Find next vertex to be visited to_visit = to_be_visited() for neighbor_index in range(num_of_vertices): # Updating new distances if vertices(to_visit)(neighbor_index) == 1 and visited_and_distance(neighbor_index)(0) == 0: new_distance = visited_and_distance(to_visit)(1) + edges(to_visit)(neighbor_index) if visited_and_distance(neighbor_index)(1)> new_distance: visited_and_distance(neighbor_index)(1) = new_distance visited_and_distance(to_visit)(0) = 1 i = 0 # Printing the distance for distance in visited_and_distance: print("Distance of ", chr(ord('a') + i), " from source vertex: ", distance(1)) i = i + 1
 // Dijkstra's Algorithm in Java public class Dijkstra ( public static void dijkstra(int()() graph, int source) ( int count = graph.length; boolean() visitedVertex = new boolean(count); int() distance = new int(count); for (int i = 0; i < count; i++) ( visitedVertex(i) = false; distance(i) = Integer.MAX_VALUE; ) // Distance of self loop is zero distance(source) = 0; for (int i = 0; i < count; i++) ( // Update the distance between neighbouring vertex and source vertex int u = findMinDistance(distance, visitedVertex); visitedVertex(u) = true; // Update all the neighbouring vertex distances for (int v = 0; v < count; v++) ( if (!visitedVertex(v) && graph(u)(v) != 0 && (distance(u) + graph(u)(v) < distance(v))) ( distance(v) = distance(u) + graph(u)(v); ) ) ) for (int i = 0; i < distance.length; i++) ( System.out.println(String.format("Distance from %s to %s is %s", source, i, distance(i))); ) ) // Finding the minimum distance private static int findMinDistance(int() distance, boolean() visitedVertex) ( int minDistance = Integer.MAX_VALUE; int minDistanceVertex = -1; for (int i = 0; i < distance.length; i++) ( if (!visitedVertex(i) && distance(i) < minDistance) ( minDistance = distance(i); minDistanceVertex = i; ) ) return minDistanceVertex; ) public static void main(String() args) ( int graph()() = new int()() ( ( 0, 0, 1, 2, 0, 0, 0 ), ( 0, 0, 2, 0, 0, 3, 0 ), ( 1, 2, 0, 1, 3, 0, 0 ), ( 2, 0, 1, 0, 0, 0, 1 ), ( 0, 0, 3, 0, 0, 2, 0 ), ( 0, 3, 0, 0, 2, 0, 1 ), ( 0, 0, 0, 1, 0, 1, 0 ) ); Dijkstra T = new Dijkstra(); T.dijkstra(graph, 0); ) )
 // Dijkstra's Algorithm in C #include #define INFINITY 9999 #define MAX 10 void Dijkstra(int Graph(MAX)(MAX), int n, int start); void Dijkstra(int Graph(MAX)(MAX), int n, int start) ( int cost(MAX)(MAX), distance(MAX), pred(MAX); int visited(MAX), count, mindistance, nextnode, i, j; // Creating cost matrix for (i = 0; i < n; i++) for (j = 0; j < n; j++) if (Graph(i)(j) == 0) cost(i)(j) = INFINITY; else cost(i)(j) = Graph(i)(j); for (i = 0; i < n; i++) ( distance(i) = cost(start)(i); pred(i) = start; visited(i) = 0; ) distance(start) = 0; visited(start) = 1; count = 1; while (count < n - 1) ( mindistance = INFINITY; for (i = 0; i < n; i++) if (distance(i) < mindistance && !visited(i)) ( mindistance = distance(i); nextnode = i; ) visited(nextnode) = 1; for (i = 0; i < n; i++) if (!visited(i)) if (mindistance + cost(nextnode)(i) < distance(i)) ( distance(i) = mindistance + cost(nextnode)(i); pred(i) = nextnode; ) count++; ) // Printing the distance for (i = 0; i < n; i++) if (i != start) ( printf("Distance from source to %d: %d", i, distance(i)); ) ) int main() ( int Graph(MAX)(MAX), i, j, n, u; n = 7; Graph(0)(0) = 0; Graph(0)(1) = 0; Graph(0)(2) = 1; Graph(0)(3) = 2; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 0; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 3; Graph(1)(6) = 0; Graph(2)(0) = 1; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 1; Graph(2)(4) = 3; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 2; Graph(3)(1) = 0; Graph(3)(2) = 1; Graph(3)(3) = 0; Graph(3)(4) = 0; Graph(3)(5) = 0; Graph(3)(6) = 1; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 3; Graph(4)(3) = 0; Graph(4)(4) = 0; Graph(4)(5) = 2; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 3; Graph(5)(2) = 0; Graph(5)(3) = 0; Graph(5)(4) = 2; Graph(5)(5) = 0; Graph(5)(6) = 1; Graph(6)(0) = 0; Graph(6)(1) = 0; Graph(6)(2) = 0; Graph(6)(3) = 1; Graph(6)(4) = 0; Graph(6)(5) = 1; Graph(6)(6) = 0; u = 0; Dijkstra(Graph, n, u); return 0; )
 // Dijkstra's Algorithm in C++ #include #include #define INT_MAX 10000000 using namespace std; void DijkstrasTest(); int main() ( DijkstrasTest(); return 0; ) class Node; class Edge; void Dijkstras(); vector* AdjacentRemainingNodes(Node* node); Node* ExtractSmallest(vector& nodes); int Distance(Node* node1, Node* node2); bool Contains(vector& nodes, Node* node); void PrintShortestRouteTo(Node* destination); vector nodes; vector edges; class Node ( public: Node(char id) : id(id), previous(NULL), distanceFromStart(INT_MAX) ( nodes.push_back(this); ) public: char id; Node* previous; int distanceFromStart; ); class Edge ( public: Edge(Node* node1, Node* node2, int distance) : node1(node1), node2(node2), distance(distance) ( edges.push_back(this); ) bool Connects(Node* node1, Node* node2) ( return ( (node1 == this->node1 && node2 == this->node2) || (node1 == this->node2 && node2 == this->node1)); ) public: Node* node1; Node* node2; int distance; ); /////////////////// void DijkstrasTest() ( Node* a = new Node('a'); Node* b = new Node('b'); Node* c = new Node('c'); Node* d = new Node('d'); Node* e = new Node('e'); Node* f = new Node('f'); Node* g = new Node('g'); Edge* e1 = new Edge(a, c, 1); Edge* e2 = new Edge(a, d, 2); Edge* e3 = new Edge(b, c, 2); Edge* e4 = new Edge(c, d, 1); Edge* e5 = new Edge(b, f, 3); Edge* e6 = new Edge(c, e, 3); Edge* e7 = new Edge(e, f, 2); Edge* e8 = new Edge(d, g, 1); Edge* e9 = new Edge(g, f, 1); a->distanceFromStart = 0; // set start node Dijkstras(); PrintShortestRouteTo(f); ) /////////////////// void Dijkstras() ( while (nodes.size()> 0) ( Node* smallest = ExtractSmallest(nodes); vector* adjacentNodes = AdjacentRemainingNodes(smallest); const int size = adjacentNodes->size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest->distanceFromStart; if (distance distanceFromStart) ( adjacent->distanceFromStart = distance; adjacent->previous = smallest; ) ) delete adjacentNodes; ) ) // Find the node with the smallest distance, // remove it, and return it. Node* ExtractSmallest(vector& nodes) ( int size = nodes.size(); if (size == 0) return NULL; int smallestPosition = 0; Node* smallest = nodes.at(0); for (int i = 1; i distanceFromStart distanceFromStart) ( smallest = current; smallestPosition = i; ) ) nodes.erase(nodes.begin() + smallestPosition); return smallest; ) // Return all nodes adjacent to 'node' which are still // in the 'nodes' collection. vector* AdjacentRemainingNodes(Node* node) ( vector* adjacentNodes = new vector(); const int size = edges.size(); for (int i = 0; i node1 == node) ( adjacent = edge->node2; ) else if (edge->node2 == node) ( adjacent = edge->node1; ) if (adjacent && Contains(nodes, adjacent)) ( adjacentNodes->push_back(adjacent); ) ) return adjacentNodes; ) // Return distance between two connected nodes int Distance(Node* node1, Node* node2) ( const int size = edges.size(); for (int i = 0; i Connects(node1, node2)) ( return edge->distance; ) ) return -1; // should never happen ) // Does the 'nodes' vector contain 'node' bool Contains(vector& nodes, Node* node) ( const int size = nodes.size(); for (int i = 0; i < size; ++i) ( if (node == nodes.at(i)) ( return true; ) ) return false; ) /////////////////// void PrintShortestRouteTo(Node* destination) ( Node* previous = destination; cout << "Distance from start: "  id 
 node2 == node) ( cout << "adjacent: "  id 
   

Dijkstra's Algorithm Complexity

Time Complexity: O(E Log V)

where, E is the number of edges and V is the number of vertices.

Space Complexity: O(V)

Dijkstra's Algorithm Applications

  • To find the shortest path
  • In social networking applications
  • In a telephone network
  • To find the locations in the map

thú vị bài viết...