Thuật toán Kruskal

Trong hướng dẫn này, bạn sẽ tìm hiểu cách hoạt động của Thuật toán Kruskal. Ngoài ra, bạn sẽ tìm thấy các ví dụ làm việc của Thuật toán Kruskal trong C, C ++, Java và Python.

Thuật toán của Kruskal là một thuật toán cây bao trùm tối thiểu lấy một đồ thị làm đầu vào và tìm tập con của các cạnh của đồ thị đó

  • tạo thành một cây bao gồm mọi đỉnh
  • có tổng trọng lượng tối thiểu trong số tất cả các cây có thể được hình thành từ biểu đồ

Cách hoạt động của thuật toán Kruskal

Nó thuộc một loại thuật toán được gọi là thuật toán tham lam tìm điểm tối ưu cục bộ với hy vọng tìm ra điểm tối ưu toàn cục.

Chúng tôi bắt đầu từ các cạnh có trọng lượng thấp nhất và tiếp tục thêm các cạnh cho đến khi đạt được mục tiêu.

Các bước để triển khai thuật toán của Kruskal như sau:

  1. Sắp xếp tất cả các cạnh từ trọng lượng thấp đến cao
  2. Lấy cạnh có trọng số thấp nhất và thêm nó vào cây khung. Nếu thêm cạnh tạo ra một chu trình, thì bác bỏ cạnh này.
  3. Tiếp tục thêm các cạnh cho đến khi chúng ta đạt được tất cả các đỉnh.

Ví dụ về thuật toán Kruskal

Bắt đầu với đồ thị có trọng số Chọn cạnh có trọng số nhỏ nhất, nếu có nhiều hơn 1, hãy chọn bất kỳ ai Chọn cạnh ngắn nhất tiếp theo và thêm nó Chọn cạnh ngắn nhất tiếp theo không tạo chu trình và thêm nó Chọn cạnh ngắn nhất tiếp theo điều đó không tạo ra một chu trình và thêm nó Lặp lại cho đến khi bạn có một cây khung

Mã giả thuật toán Kruskal

Bất kỳ thuật toán cây bao trùm tối thiểu nào cũng xoay quanh việc kiểm tra xem việc thêm một cạnh có tạo ra một vòng lặp hay không.

Cách phổ biến nhất để tìm ra điều này là một thuật toán được gọi là Union FInd. Thuật toán Union-Find chia các đỉnh thành các cụm và cho phép chúng ta kiểm tra xem hai đỉnh có thuộc cùng một cụm hay không và do đó quyết định xem việc thêm một cạnh có tạo ra một chu trình hay không.

 KRUSKAL(G): A = ∅ For each vertex v ∈ G.V: MAKE-SET(v) For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v): if FIND-SET(u) ≠ FIND-SET(v): A = A ∪ ((u, v)) UNION(u, v) return A

Ví dụ về Python, Java và C / C ++

Python Java C C ++
 # Kruskal's algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices self.graph = () def add_edge(self, u, v, w): self.graph.append((u, v, w)) # Search function def find(self, parent, i): if parent(i) == i: return i return self.find(parent, parent(i)) def apply_union(self, parent, rank, x, y): xroot = self.find(parent, x) yroot = self.find(parent, y) if rank(xroot) rank(yroot): parent(yroot) = xroot else: parent(yroot) = xroot rank(xroot) += 1 # Applying Kruskal algorithm def kruskal_algo(self): result = () i, e = 0, 0 self.graph = sorted(self.graph, key=lambda item: item(2)) parent = () rank = () for node in range(self.V): parent.append(node) rank.append(0) while e < self.V - 1: u, v, w = self.graph(i) i = i + 1 x = self.find(parent, u) y = self.find(parent, v) if x != y: e = e + 1 result.append((u, v, w)) self.apply_union(parent, rank, x, y) for u, v, weight in result: print("%d - %d: %d" % (u, v, weight)) g = Graph(6) g.add_edge(0, 1, 4) g.add_edge(0, 2, 4) g.add_edge(1, 2, 2) g.add_edge(1, 0, 4) g.add_edge(2, 0, 4) g.add_edge(2, 1, 2) g.add_edge(2, 3, 3) g.add_edge(2, 5, 2) g.add_edge(2, 4, 4) g.add_edge(3, 2, 3) g.add_edge(3, 4, 3) g.add_edge(4, 2, 4) g.add_edge(4, 3, 3) g.add_edge(5, 2, 2) g.add_edge(5, 4, 3) g.kruskal_algo()
 // Kruskal's algorithm in Java import java.util.*; class Graph ( class Edge implements Comparable ( int src, dest, weight; public int compareTo(Edge compareEdge) ( return this.weight - compareEdge.weight; ) ); // Union class subset ( int parent, rank; ); int vertices, edges; Edge edge(); // Graph creation Graph(int v, int e) ( vertices = v; edges = e; edge = new Edge(edges); for (int i = 0; i < e; ++i) edge(i) = new Edge(); ) int find(subset subsets(), int i) ( if (subsets(i).parent != i) subsets(i).parent = find(subsets, subsets(i).parent); return subsets(i).parent; ) void Union(subset subsets(), int x, int y) ( int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets(xroot).rank subsets(yroot).rank) subsets(yroot).parent = xroot; else ( subsets(yroot).parent = xroot; subsets(xroot).rank++; ) ) // Applying Krushkal Algorithm void KruskalAlgo() ( Edge result() = new Edge(vertices); int e = 0; int i = 0; for (i = 0; i < vertices; ++i) result(i) = new Edge(); // Sorting the edges Arrays.sort(edge); subset subsets() = new subset(vertices); for (i = 0; i < vertices; ++i) subsets(i) = new subset(); for (int v = 0; v < vertices; ++v) ( subsets(v).parent = v; subsets(v).rank = 0; ) i = 0; while (e < vertices - 1) ( Edge next_edge = new Edge(); next_edge = edge(i++); int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) ( result(e++) = next_edge; Union(subsets, x, y); ) ) for (i = 0; i < e; ++i) System.out.println(result(i).src + " - " + result(i).dest + ": " + result(i).weight); ) public static void main(String() args) ( int vertices = 6; // Number of vertices int edges = 8; // Number of edges Graph G = new Graph(vertices, edges); G.edge(0).src = 0; G.edge(0).dest = 1; G.edge(0).weight = 4; G.edge(1).src = 0; G.edge(1).dest = 2; G.edge(1).weight = 4; G.edge(2).src = 1; G.edge(2).dest = 2; G.edge(2).weight = 2; G.edge(3).src = 2; G.edge(3).dest = 3; G.edge(3).weight = 3; G.edge(4).src = 2; G.edge(4).dest = 5; G.edge(4).weight = 2; G.edge(5).src = 2; G.edge(5).dest = 4; G.edge(5).weight = 4; G.edge(6).src = 3; G.edge(6).dest = 4; G.edge(6).weight = 3; G.edge(7).src = 5; G.edge(7).dest = 4; G.edge(7).weight = 3; G.KruskalAlgo(); ) )
 // Kruskal's algorithm in C #include #define MAX 30 typedef struct edge ( int u, v, w; ) edge; typedef struct edge_list ( edge data(MAX); int n; ) edge_list; edge_list elist; int Graph(MAX)(MAX), n; edge_list spanlist; void kruskalAlgo(); int find(int belongs(), int vertexno); void applyUnion(int belongs(), int c1, int c2); void sort(); void print(); // Applying Krushkal Algo void kruskalAlgo() ( int belongs(MAX), i, j, cno1, cno2; elist.n = 0; for (i = 1; i < n; i++) for (j = 0; j < i; j++) ( if (Graph(i)(j) != 0) ( elist.data(elist.n).u = i; elist.data(elist.n).v = j; elist.data(elist.n).w = Graph(i)(j); elist.n++; ) ) sort(); for (i = 0; i < n; i++) belongs(i) = i; spanlist.n = 0; for (i = 0; i < elist.n; i++) ( cno1 = find(belongs, elist.data(i).u); cno2 = find(belongs, elist.data(i).v); if (cno1 != cno2) ( spanlist.data(spanlist.n) = elist.data(i); spanlist.n = spanlist.n + 1; applyUnion(belongs, cno1, cno2); ) ) ) int find(int belongs(), int vertexno) ( return (belongs(vertexno)); ) void applyUnion(int belongs(), int c1, int c2) ( int i; for (i = 0; i < n; i++) if (belongs(i) == c2) belongs(i) = c1; ) // Sorting algo void sort() ( int i, j; edge temp; for (i = 1; i < elist.n; i++) for (j = 0; j elist.data(j + 1).w) ( temp = elist.data(j); elist.data(j) = elist.data(j + 1); elist.data(j + 1) = temp; ) ) // Printing the result void print() ( int i, cost = 0; for (i = 0; i < spanlist.n; i++) ( printf("%d - %d : %d", spanlist.data(i).u, spanlist.data(i).v, spanlist.data(i).w); cost = cost + spanlist.data(i).w; ) printf("Spanning tree cost: %d", cost); ) int main() ( int i, j, total_cost; n = 6; Graph(0)(0) = 0; Graph(0)(1) = 4; Graph(0)(2) = 4; Graph(0)(3) = 0; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 4; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 0; Graph(1)(6) = 0; Graph(2)(0) = 4; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 3; Graph(2)(4) = 4; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 0; Graph(3)(1) = 0; Graph(3)(2) = 3; Graph(3)(3) = 0; Graph(3)(4) = 3; Graph(3)(5) = 0; Graph(3)(6) = 0; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 4; Graph(4)(3) = 3; Graph(4)(4) = 0; Graph(4)(5) = 0; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 0; Graph(5)(2) = 2; Graph(5)(3) = 0; Graph(5)(4) = 3; Graph(5)(5) = 0; Graph(5)(6) = 0; kruskalAlgo(); print(); )
 // Kruskal's algorithm in C++ #include #include #include using namespace std; #define edge pair class Graph ( private: vector 
 G; // graph vector 
 T; // mst int *parent; int V; // number of vertices/nodes in graph public: Graph(int V); void AddWeightedEdge(int u, int v, int w); int find_set(int i); void union_set(int u, int v); void kruskal(); void print(); ); Graph::Graph(int V) ( parent = new int(V); //i 0 1 2 3 4 5 //parent(i) 0 1 2 3 4 5 for (int i = 0; i < V; i++) parent(i) = i; G.clear(); T.clear(); ) void Graph::AddWeightedEdge(int u, int v, int w) ( G.push_back(make_pair(w, edge(u, v))); ) int Graph::find_set(int i) ( // If i is the parent of itself if (i == parent(i)) return i; else // Else if i is not the parent of itself // Then i is not the representative of his set, // so we recursively call Find on its parent return find_set(parent(i)); ) void Graph::union_set(int u, int v) ( parent(u) = parent(v); ) void Graph::kruskal() ( int i, uRep, vRep; sort(G.begin(), G.end()); // increasing weight for (i = 0; i < G.size(); i++) ( uRep = find_set(G(i).second.first); vRep = find_set(G(i).second.second); if (uRep != vRep) ( T.push_back(G(i)); // add to tree union_set(uRep, vRep); ) ) ) void Graph::print() ( cout << "Edge :" << " Weight" << endl; for (int i = 0; i < T.size(); i++) ( cout << T(i).second.first << " - " << T(i).second.second << " : " << T(i).first; cout << endl; ) ) int main() ( Graph g(6); g.AddWeightedEdge(0, 1, 4); g.AddWeightedEdge(0, 2, 4); g.AddWeightedEdge(1, 2, 2); g.AddWeightedEdge(1, 0, 4); g.AddWeightedEdge(2, 0, 4); g.AddWeightedEdge(2, 1, 2); g.AddWeightedEdge(2, 3, 3); g.AddWeightedEdge(2, 5, 2); g.AddWeightedEdge(2, 4, 4); g.AddWeightedEdge(3, 2, 3); g.AddWeightedEdge(3, 4, 3); g.AddWeightedEdge(4, 2, 4); g.AddWeightedEdge(4, 3, 3); g.AddWeightedEdge(5, 2, 2); g.AddWeightedEdge(5, 4, 3); g.kruskal(); g.print(); return 0; )  

Kruskal's vs Prim's Algorithm

Thuật toán của Prim là một thuật toán cây bao trùm tối thiểu phổ biến khác sử dụng một logic khác để tìm MST của một đồ thị. Thay vì bắt đầu từ một cạnh, thuật toán của Prim bắt đầu từ một đỉnh và tiếp tục thêm các cạnh có trọng số thấp nhất không có trong cây, cho đến khi tất cả các đỉnh đã được bao phủ.

Độ phức tạp của thuật toán Kruskal

Độ phức tạp về thời gian của Thuật toán Kruskal là: O (E log E).

Các ứng dụng thuật toán của Kruskal

  • Để bố trí hệ thống dây điện
  • Trong mạng máy tính (kết nối LAN)

thú vị bài viết...